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Abstract

This paper is concerned with the further development of a new numerical method, the

space-time solution element (STS) method, for solving conservation laws. The present work

focuses on the two-dimensional, steady, incompressible Navier-Stokes equations. Using first

an integral approach, and then a differential approach, the discrete flux conservation equa-

tions presented in a recent paper are rederived. Here (i) a simpler method for determining

the ftux expressions at cell interfaces is given; (ii) a systematic and rigorous derivation of

the conditions used to simulate the differential form of the governing conservation law(s)

is provided; (iii) necessary and sufficient conditions for a discrete approximation to satisfy

a conservation law in E2 are derived; and (iv) an estimate of the local truncation error is

ven.

A specific scheme is then constructed for the solution of the thin airfoil boundary layer

problem. Numerical results are presented which demonstrate the ability of the scheme to

accurately resolve the developing boundary layer and wake regions using grids which are

much coarser than those employed by other numerical methods. It is shown that ten

cells in the cross-stream direction are sufficient to accurately resolve the developing airfoil

boundary layer.





A New Flux-Conserving Numerical Scheme for the

Steady, Incompressible Navier-Stokes Equations

I. Introduction

This paper is concerned with the further development of a new numerical method*

for solving conservation laws. 1-4 The differences between the current method and the

traditional finite-difference, finite-volume, finite-element, and spectral methods have been

previously described. 1-4 The key differences may be summarized as follows: the current

method (i) provides for a unified treatment of space and time; (ii) represents the local

discrete solution through a Taylor series approximation that identically satisfies both the

integral and differential forms of the governing conservation law(s); (iii) balances fluxes at

cell interfaces as an integral part of the numerical formulation; and (iv) evaluates fluxes

at cell boundaries using exact functional expressions (to the order of accuracy of the local

expansions).

Specific numerical schemes 1-4 based on (i) - (iv) above have demonstrated the follow-

ing properties: First, flux conservation is satisfied both locally and globally. Second, high

accuracy is achieved without coupling the solution across numerous cells or grid points.

Third, cells communicate only with their immediate neighbors, in much the same way that

discrete regions of a real fluid interact. Fourth, the discrete dependent variables and their

derivatives are all treated in a unified and consistent manner. Finally, the schemes them-

selves are conceptually simple and lend themselves to straightforward implementation.

In this paper, we are concerned with the continued development of a new flux-

conserving numerical scheme for the steady Navier-Stokes equations. 3 Previous results

have demonstrated the ability of this scheme to accurately resolve internal boundary layer

flows on coarse, uniformly-spaced grids.

One purpose of this paper is to extend the internal scheme presented in [3] to external

flow fields. The specific application that we consider is incompressible, laminar flow past a

thin airfoil. In spite of the significant differences between external and internal flows, the

scheme we propose here is a straightforward extension of the previously presented internal

flow scheme. Through comparisons with the Blasius solution, we show that the thin airfoil

boundary layer can be accurately resolved on sparse, coarsely-spaced grids.

Another purpose of the present work is to further illumine the flux conservation scheme

presented in [3]. For simplicity, we concentrate in this paper on the incompressible Navier-

Stokes equations. Using first an integral approach, and then a differential approach, we

rederive the discrete flux conservation equations. Here we (i) present a simpler method for

determining the flux expressions at cell interfaces; (ii) provide a systematic and rigorous

derivation of the conditions used to simulate the differential form of the governing conser-

vation law(s); (iii) derive necessary and sufficient conditions for a discrete approximation

*The Space-Time Solution Element (STS) Method, also called The Method of Space-Time

Conservation Element and Solution Element



to satisfy a conservation law in E2; and (iv) provide an estimate of the local truncation

error.

In the next section, we derive the discrete flux conservation equations for the incom-

pressible Navier-Stokes equations. We then construct a specific scheme for the solution

of the thin airfoil boundary layer problem, and conclude with a discussion of numerical

results.

II. Numerical Formulation

A. Conservation Laws for the Navier-Stokes Equations

We consider the two-dimensional, steady, incompressible Navier-Stokes equations in

dimensionless form. We assume that the viscocity # is constant, and denote the density

by p and the Reynolds number by ReL, where .ReL = _ The parameters L and Uoo

refer to some reference length and velocity, respectively.

Let x and y denote the horizontal and vertical coordinates, respectively, of a two-

dimensional Euclidean space E2. Denoting the horizontal velocity component by u, the

vertical velocity component by v, and the static pressure by p, the governing equations for

the conservation of mass and momentum may be written in Cartesian coordinates as 5

Ou Ov

o---;+ N = o (2.1)

0(__ 00x + v- -_) + N(uv - -_) = 0 (2.2)

O(v2o (u_ _ _) + + p_ _.)
Oz ay

where

Tx _ --

= 0 (2.3)

2 (20u Ov
3neL Ox Oy ) (2.4)

(2.5)1 ou o_)
"_- ._(_ + o_

2 (20v Ou
r_- 3ReL _y Ox

) (2.6)

(Although 0" 0,,or _ may be eliminated from r_ and r_y using (2.1), we retain both terms

here to be consistent with the compressible formulation presented in [3].)



By applying the divergence theorem to equations 2.1 - 2.3, they may be written in

integral form as

s _M._=0 (2.7/
(y)

_s gx_,-_=0
(y)

(2.s)

Js h v M " "_s = O (2.9)
(V)

where S(V) is the boundary of an arbitrary region V in E2, and ds is equal to da _, where

ff is the outward unit normal to S(V) and da is the length of a surface element of S(V).

The flux current density vectors, hM, _tXM, and hYM, corresponding to the conservation of

mass, x-momentum, and y-momentum, respectively, are given by

;,_, d_j (u,_) (2.10)

_x_, d_j (u_+ v- r,,,u_ - ,_) (2.11)

_, d,j (uv - r_y, v_+ p - ryy). (2.12)

Equations 2.7 - 2.9 thus express physical conservation laws for the conservation of

mass and momentum in an arbritrary region V of E2.

B. Discrete Flux Conservation Equations - Integral Formulation

Let E2 be discretized by a mesh with nonoverlapping rectangular regions. We assume

constant spacing Ax and Ay in the x and y directions, respectively. (See Figure 1.) Each

of the rectangular regions in the mesh will be referred to as both a conservation element

and a solution element. A conservation element is a discrete region in E2 over which the

discrete analogue of the integral conservation laws (2.7) - (2.9) will be imposed. A solution

element is a discrete region in E2 in which a local Taylor series expansion is employed to

represent the physical solution. In general, they need not refer to the same discrete region

(See [2] or [4]). A conservation element will be denoted by CE(i,j) and a solution element

by SE(i,j). The boundary of a conservation element will be denoted by S(CE(i,j)), and

the cell center by (xi, yj).
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We then assumethat the u and v velocity components and the static pressure p

can each be represented locally on a solution element by a two-dimensional Taylor series

expansion about the cell center (xi, Yi) as follows:

u(x,y;i,j) ael. = uo,o + u,,o(x- xi) + uo,,(V-Vj) (2.13)

+ U_,o(_- _)_ + _,,,_(_- _)(u - ui) + Uo,,(u- ui)_

v(x,y;i,j) d_I. = Vo,o + Vl,o(X -- xi) + Vo,,(y -- Yi) (2.14)

p(x,y;i,j) d_Y~ = Po,o + pl,o(x--xi) + Po.,(Y--Yj) (2.15)

+ p_0(x- x,)_ + p,.,(_ - x_)(u- yi) + p0.,(u- u_)_.

For clarity, the i,j subscripts have been omitted from the coefficients in the Taylor series

expansions. These coefficients are the unknowns to be solved for.

The Taylor series coefficients are related to the derivatives of the discrete dependent

variables at the cell center by

u0,0 = u (2.16)

u_,o = Ou/Ox (2.17)

Uo,, = Ou/Oy (2.18)

t O_u/Oz2
U2, 0 _

(2.19)

u,,l = 02u/OzOy (2.20)

1 02u/Oy 2 (2.21)
UO, 2 -- _ ~

and similarly for v and p.
N

The discrete analogue to equations 2.7 - 2.9 in E2 is then given by

Js _M._ o (2.22)
(CE(i,j))
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S(CE(i,j)) _XM

S(CE(ij))_Y_'

where

•T_= o (2.23)

•T_= o (2.24)

_ d_d (u,v) (2.25)

_hr., dff (uv- [_,, v_+ p- [yy) (2.27)

and

2

_, = 3---R_e(2aulc3z - av/au)
(2.28)

1 (OulOy+ a_lOx) (2.29)
[zy- Rer ~

2

r_y - 3ReL(2av/a_ - O_lOx). (2.30)

Equations 2.22 - 2.24 are a coupled system of integral conservation laws in which the

fluxes _M"-_S, h_xM" _S, and h_vM" d--_ are conserved by way of the discrete variables u, v

and p. Each equation takes the form
N

___ = o, (2.31)
(CE(i,j))

where the second-order expansion h is a function of u, v and p. Since the form of the

integrals in (2.22) - (2.24) are identical, the integrations can be carried out by way of

equation 2.31, where

,tel hX. = (. ,h _') (2.32)

and
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h_(x,y;i,j ) d_=f ho[o+ hL(_-_) + h',(u-Uj)o,

hY(x,y;i,j ) de=f h_o,° + h_,o(X_xi) + h_,,(y_yj)

+ h_,o(_-_)_ + hL(x-_)(y-V_) + hL(v-vJ)_"

(2.33)

(2.34)

It is understood that each of the coefficients in (2.33) and (2.34) are functions of the

discrete variables Uo.o, Vo.o, Po,o, ul.0, vl.0, pl.0, etc.. For example, when h corresponds to

_hx_, the term h0_o corresponds to the constant term of the expression u s + p - E_x, and

similarly for the other terms. Once the results are obtained in terms of _, it is a simple

matter to obtain the corresponding results for _M, _XM, and _rM by way of equations 2.25

- 2.27.

The boundary S(CE(i, j)) of each conservation element is a simple closed curve in E2.

Consequently, the surface integration required in equation 2.31 can be converted into a line

integration form. 1 With d-'_ = da_, where _ is the outward unit normal to S(CE(i,j))

and da is the length of a surface element in E2, we have

""4" defds = dy _- dz -f, (2.35)

and

h.-_s -"- - h u dx + h _ dy = ff-d_ (2.36)

where

ff d,f= (_ hV, h _~) (2.37)

and

(2.38)

The line integration is taken to be positive in the counterclockwise sense. If we denote

the vertices of an arbritrary conservation element CE(i,j) by P, Q, R, and S as shown in

Figure 2, we have

J, h.e_ - 0"-_
( C E( i,j) ) Q RSI # -

"J [j(_--q)+ s(_-_) + s(_) + s(yp)],,. (2.39)



[J(PQ)]ij denotesthe flux of _ through the line segmentPQi,j, and similarly for J(QR),

J(R-S), and J(S-P). We then have (omitting i,j subscripts)

j(p--q) d_d/; _ h.'dx + h=d_

[x,+_ h ydx with y YJ + A y
J=,-_-Z " 2

Similarly,

AxJ(QR) d¢___.I _ YJ+_ h = dy with x = xi (2.41)
jyj_=j_ - 2

[ A y (2.42)j(_--_) d_=f _ ='+_ h y dx with y = yj
j =____. ~ 2

J(SP) dj [y_+a__ h= dy with x =xi + Ax (2.43)
Jyj-_ - -_--.

Carrying out the line integrations in equations 2.40 - 2.43, one easily obtains

Ax3 h_o + Ax [Ay2 -_J(P--QQ) - 12 ' L'-_ h°y'2 + h°Y'l + h°Y'°] (2.44)

J(QR) - AY3 [Ax 2 Ax h_ + h= ] (2.45)12 ho,2- ay t 4 h_,o- -K 1,o o.0

J(R-'S) = Az312 h_°' - Ax L____..hoV.2[Ay2 Ay2 h°_l' + h°V'°] (2.46)

z(sP) h= + h'] (2.47)-- 12 h_,, + Ay t 4 h_'° + T 1,o 0,o •



By virtue of equations 2.31 and 2.39we require that

J(PQ) + J(-Q--R) + J(-R--S) + J(-fffi) - O. (2.48)

Thus, we obtain the flux conservation constraint

h z + h0Yl - 0. (2.49)
1,0

Imposing this condition, we obtain the following expressions for the normalized flux of _h

across the boundaries of CE(i, j):

](P-0Q) _x_ h_0 + Av2 zxv hZAx -- 12 ' -7 -h_'' 2 1,0 + h0V0 (2.50)

J(QR) Ay2 Ax2 Ax h, (2.51)
aV - 12 ho,, + T h2_'°- -5- "° + h°_'°

J(R---S) Ax 2 Ay 2 _ h _ + hVoo (2.52)Ax = 1--2 -h_v'° + ---4--h°v'2 + 1,0 .

J(sP) ,av_ ,a_ :'_ h• (2.53)
Ay = 1--2-h_':+ -_h_o + _ _.o+ ho_o.

Equations 2.50 - 2.53 are a third-order-accurate representation of the flux through the

boundaries of CE(i,j).

The flux expressions above may now be expressed in terms of the discrete dependent

variables of the Navier-Stokes equations by way of equations 2.25 - 2.27. Corresponding

to (2.25), we have

= (2.54)

so that

_h• = _ (2.55a)

h' = _ (2.55b)

and the mass flux conservation constraint corresponding to (2.49) is

ul,o + vo,1 = O. (2.56)



The normalized flux expressions for .hM are

J(PQ)u Az2 AY2 v Ay
Ax 12 V2,o + --_ o,_ 2 ul,o + Vo,o

(2.57)

J(QR)u Ay 2 Ax2 Ax

Ay 12 uo,. + _ u2,o 2 Ul,o + Uo,o
(2.5s)

J(R-S)M Az 2 AY2Ax - 12 V2,o + ---_--Vo,_ + u,,o + Vo,o
(2.59)

J( S--P)M /Xy_ /xx 2 Az
Ay 12 uo,2 + --_-U2,o + -_-U_,o + uo,o.

(2.60)

Corresponding to (2.26), we have

_ _XM (2.61)

so that

h * = uS+ p - T_x

h y = uv - r.y.

The x-momentum flux conservation constraint corresponding to (2.49) is

2 (4 U2,o - v,,,)]1 +
Ul,oUo,o _ Uo, t Vo,o + Pl,o Rer

and the normalized flux expressions for h.xM are

= 0,

(2.62a)

(2.62b)

(2.63)

Ax2 (U2, ° V0,0
12

+ -_ [V0,o u0,1

J(PQ)xM

Ax

AY 2 z

+ V_,oUo,o + U,,oV,,o) + --_-_Uo,_Vo,o + Vo,_Uo,o + Uo,,Vo,,)

-- Uo, o Ul,o

(2.64)

1 (2u0,, + v_,l)] 1Rer Rer (Uo,, + Vl,o) + Uo,o Vo,o

9



AY2 (2 Uo,_ Uo,o
12

+ "-_ Vo,oUo.1 -- Uo,o Ul,o

+

J(QR)xM
Ay

'_X2 - 2

, _7_(2 + +Uo,1 + Po,2) + U2,o Uo,o Ul,o

21 (2Uo,, +v,,,) + po,o
ReL 3Re_

P2,0)

(2.65)

2
(2u_,o - Vo,_) + uo,o

Ax 2

12 (U2,oVo, o + V_,oUo,o +

2 Vo,o Uo,l -- Uo, o 721,o

J(_--_)x_, _
Az

Ay 2 .

U_.oV,,o) + T(uo._Vo,o + Vo._Uo,o

i (2Uo._+vl.,) lj i
ReL Rer.

(2.66)

_"_ O, 1 Vo,1)

(Uo,1 -'1-Vl,o) q- Uo,o Vo,o

J(3-P)_M
Ay

(2.67)

/_kX2 " 2

2 --_-(2 U,.o + + p_,0)AY2 (2Uo,_Uo.o + Uo,_ + Po._) + Uo,o U_,o
12

2 Vo,0Uo,_ - Uo,oUl,o 2 2i (2Uo._ +vl,,) + Po.o (2,,,.o-Vo,,) + Uo.o.
ReL 3ReL

(In applying (2.50) - (2.53) to the x-momentum equation, we have replaced h z with -ho y1,0 ,1

because it gives a simpler expression.)

Corresponding to (2.27), we have

__= _L_, (2.6s)

with

h _ = u v - _ (2.69a)

h_ = v2+ p - ryy. (2.69b)

The y-momentum flux conservation constraint is

1 2 (4Vo,2 )] 0, (2.70)V,,o_o,o+ v°,l,o,o + Po.1 Re_[(2v''°+_''') + 5 -u,,, =

10



and the normalized flux expressions for _YM are

J(PQ)YM _

zntX
(2.71)

Ax2 (2 V2,o v0,o + v 2 AY 2 - 2
12 _,o + P2,o) + ----_-(2vo,,Vo,o + Vo,, + Po,=)

-T Uo,oVl,o "at- Vo,o Ul,o ReL (2v2,o + ul,_)] + Po,,

2

3ReL

2
(2 Vo,, - U,,o) + Vo,o

J(_)Y_ __

Ay
(2.72)

/_X 2 .

/xY_(_,o,_Uo.o+ Uo._o.o+ _o,,Uo,,)+ -Z-t_,o_,o,o + u_.o_o.o+ "UI,O "U1,0)

12

Ax[2 Uo,oVl,o + Vo,oU_,o 1 (2v_,o +ul,,)] 1ReL ReL (uo, t + v_,o) + Vo,oUo,o

J (-g-_)_.,_ _
Ax

(2.73)

AY 2 z,, 2

Az2(2V_,oVo,o + v _ + p_,o) + TtZVo,,Vo,o + Vo,, + po,,)12 1,o

-t- Uo,o Vl,o "4" Vo,o Ul,o ReL
(2V2,o + u_,l)] + Po,o 3ReL

2
(2Vo,1 - U,,o) + vo,o

J(SP)yM _

Ay
(2.74)

mx 2 .

AY_(Vo,,,,o,o+ Uo,,Vo,o+ Vo,,,,o,,)+ -:--(V.Uo,o + ,,=,oVo,o+ Vl,0 Ul,o)

12 ti -

1+ T Uo,o V:,o + Vo,o U_,o ReL 1(2 v2,o + ul,_) ReL
(Uo,_ "4-Va.o) -4- Vo,o Uo,o.

The following conditions are then satisfied on each conservation element:

J(P-0)M+ j(_R). + J(_-_)_, + j(3--P)_, = o (2.75)

J(PQ)x_ + J("O"R)xu + J(R"S)x_ + J(S_)x_ = 0 (2.76a)

J (-ff-QQ) YM + J(Q--R)rM + J(R--ff)rM + J ( S_ ) r M =-- O. (2.76b)

11



Thus, the total massand momentum flux out of eachconservationelement is exactly zero.
Furthermore, the discrete variables u, v, and p satisfy the Navier-Stokes equations in int-

egral form.

The above formulation provides the framework through which local and global flux

conservation is achieved. We may now turn our attention to the differential conservation

laws (2.1) - (2.3).

C. Discrete Flux Conservation Equations - Differential Formulation

We begin with a consideration of the general conservation law

= o. (2.77)

Let

= (hZ,h y) (2.78)

be defined and continuous on an open domain 2) of E2. Suppose that the partial derivatives

of h x and h y exist to all orders and are continuous on 2). Then, a necessary and sufficient

condition for h to be a solution of (2.77) in 2) is that its partial derivatives satisfy

vO'_h == c3" h_
+ = 0 (2.79)

c3zn-k Oyk cOzn-k-10yk+l

for n = l, 2, 3, ... and k = 0,1, 2, ..., n -1.

For n = 1 this gives
Oh _ c3hY

+ - 0 (2.80)
Oz Ou

and for n = 2

02h_ 02h _
+ - o (2.81a)

cOz2 c3z Oy

02h, c32h y
+ = O. (2.815)

cOxOy coy 2

If _t is a solution of (2.77), then (2.80) holds. Equation 2.79 follows by repeated differ-

entiation of equation 2.80 with respect to x and y. The general result can be established

by induction.

Conversely, (2.80) shows that if h satisfies (2.79), then _t is a solution of (2.77).

On the basis of the above, we state the following theorem:

12



Theorem 2.I Let h = (h _, h_) be defined and continuous on an open domain D of E2,

and let the partial derivatives of h _ and hY exist to all orders and be continuous on D.

Then, h satisfies V. h = 0 throughout 2) if and only if its partial derivatives satisfy

O"h" a"h_
Oz._j, Oyk (x, y) + Ox.___ 1 Oyk+a (z, y) = 0

for n = 1,2,3,... and k = 0,1, 2, ..., n - 1,

for every (x, y) in :D.

Now suppose that h is a solution of (2.77), and that h _ and hY are also analytic

throughout 19. Near any (xo,yo) in 13, we have the uniformly convergent Taylor series

expansions

0h_(xo,y0)(_- yo) +h=(x,y) = h_(_o,yo)+ (xo,y0)(_-_0) + 0_

- [o_--;-:_o¢,(x°'y°)] ('"(X-k)!-_°)"-"<(y k!_'°)"
n=O k=O

(2.82)

,,-,.,,(.:,,,_)= h"(x<,,_o)+ __._h_(.:,:,o,_o)(.__.:,,<,)+ _Oo__y_(_o,yo)(__y<.)+ ...

- LOx,,_kOy k(xo, (n:_ " -ki
n----0 k----0

(2.83)

Oh x

Ox

Oh • 92 h • 0 _ h x
(_o,y0) + -zT(_o,yo)(_-x0) + _-::__(_o,y0)(_-yo) + ...

Oz ¢Jx-

n--1 Onhz xo)n-k-1

n=l k=O

(2.84)

OhY Oh_

Oy Oy
(Xo, yo) +

92 h y

OxOy

02h y

_(_0,_o)(X - _o) + --57_o,yo)(y- _o) +

" r O"h_' . .] (z - Zo)"-_< (y - Uo)(k-_)
= E E[Ozr'-"ff:--kOyk tzo'y°)] (n -- k)l (k - 1)!

n=l k=l

"-'r o-. ,,o)](=,- (,,,-
= E E [OX n--_'--I Oyk+ 1 (xO' (i'i, -- k - i)! kl

n=l k=O

(2.85)

13



O0 clef O1 def 0 _d Ol def 0
where _ = 1, _ = o--7, o-'_y_ - or"

We now examine the effect of truncating (2.82) and (2.83). Let

_-,"_ L i:gnhXiox._=_Oyk(Xo,yo)]J(x - Zo)"-k (y - yo)kh_(x,y)
.=ok=o (n- k)! k!

and

(2.86)

be the Nth-order Taylor series expansions of h x and h v, respectively. Then

where (x_,y;) is a point on the line segment between (xo, yo) and (x,y)fi Similarly,

h,(x,v)- h_(x,y) N+Ir 0-+lh, . ](X-Xo) _+1-_ (y-yo)_ELi)xN+l-kOyk(X2'Y?2) (N + l-k)! k!
k=0

(2.87)

(2.88)

(2.89)

Let

0 N+lhy [z -- i_+l,k_< M_+I, k and Ox2V+l_kOy k < v

in a neighborhood No of (Xo,Yo) for k = 0, 1, ...,N+I. If Ax = (X-Xo) and Ay =

where (x, y) is any point in No, then

Ih=(x,y) - h_(x,y)l <_
:v+l Ax_V+l-k Ayk

E M_+IJ'(N + I_k)I k!
k=O

(Y-Yo)

(2.90)

and

IhY(x,y) - h_(x,y)l
2v+1 Ax2V + l-k

<- E Y AYk
k=o M_'+l'k (N + 1 - k)l k[

(2.91)

Let MN+I = sup{M_+l,k, M_+,,k,v k = 0, 1, ..., N+I}. Then we have the more conservative

error estimates

MN+I(N + 2)[max(Ax,Ay)]N+I
Ih'(x,y)- h_(x,V)l < [(__:_)!]_

(2.92)

14



and

Ih_(=,y)- h_(=,y)l <
MN+I (N + 2) [max(Ax, Ay)] N+I (2.93)

If N is an even number, then [(--_)!12 is defined by

= (W + _)! (Y + )!

"'= = I =+"= (--V-)'" (2.94)= (W+_ )!(W+i + )! ( )! ,

Equations 2.84 - 2.87 together with Theorem 2.1 show clearly that the function hN de=/
x Y(hN, h_,) is a solution of the governing conservation law (2.77). Its order of accuracy is

given by (2.92) - (2.93). It follows that a necessary condition for a local polynomial

approximation _,_ to be the Taylor series approximation h,_ to h is that it be a solution

of Equation 2.77.

To proceed further, we need to formalize the notions of "a local polynomial approxi-

mation" and "convergence."

Definition 2.1 Let (Xo, yo) be a point in E2, and let Ax and Ay be positive numbers.

Let NOA_:A_ = {(x,y): ]X--XoI <_ -_- and lY-Yo]-< _2-_}" Then, alocal discrete polynomial

approximation is a function _N de_._/(h_,h_) defined on N0axA_ by

hS(=,y) = _ _ h__k,_(_=,_Y) (=- =o)=-_(y - yo)* (2.95)
n=O k=O

N

EE ' = - -= h,_k,k(A ,Ay) (x z=),-k (y y0)k, (2.96)

n----O k=0

Y
where h__k, k and hn_k, k are functions of Ax and Ay.

Definition 2.2 A local discrete polynomial approximation _hx converges to order K

to the exact solution h of the conservation law V. _ = 0 as Ax ---, 0, Ay --+ 0 if and

only if for any e > 0, there exist numbers 51 > 0 and 52 > 0 such that when Ax < 51 and

Ay < (_2,

h__k,k(Ax, Ay ) -

O_h _ 1 I

o=n-ko_k(z°'y°) (n-k)! k!l

for n = 0,1, ..., K, and k = 0, 1, ..., n, and the remainder RK = h__

< e (2.97)

Onh _ 1 1 IOxn-kOy k(x°'y°) (n-k)! k! < e (2.98)

- _= --, 6 as A_ _ 0,

Ay --* O.

15



We may now state and prove the two following important theorems.

Theorem 2.2 Let e be any positive nmnber, and let 0 _< K _< N. If hN(Az, Ay)

converges to order K to the exact solution h of the conservation law V • _ -- 0 as

Ax _ 0, Ay ---, 0, then for all sufficiently small Ax and Ay,

I1 - _hN(ZXx,AY)lloo<

Proof:

We have

=_

(2.2a)

(e.eb)

(e.ec)

where ]_K = fzn - h K and _K = _n - hK. The first two terms on the right hand side

of (2.2c) are each less than _ for sufficiently small Ax and Ay, and the third term is a

polynomial whose lowest order term is of degree K + 1. Since the coefficients of/_K are

fixed, and _K --* 0', the third term is also less than _ for sufficiently small Ax and Ay,
and the theorem follows.

Theorem 2.3 Let e be any positive number, and let 1 _< K < N.

converges to order K to the exact solution h of the conservation law

Ax ---, 0, Ay ---, 0, then for all sufficiently small Ax and Ay,

If _(Az, Ay)
_-_ = Oas

(n k) h__k,k(Ax, Ay ) + (k + 1) "- h.___l,k+l(Ax, Ay ) < e

for n = 1,2,...K, k = 0,1,...n- 1.

Proof:

Since h]N(Ax, Ay) converges to order K, for any n = 1, 2, ..., K, and k = 0, 1, ..., n - I,

we have

c3nh _ I 1 (2.3a)

[ a"h" Vo)] 1 1 (2.3b)
hVn_k_m,k+x(Ax, Ay) ---* LOx._-_-OVk+ _(Xo, (n- k -- 1)] (k + 1)!

so that

- a"h • 1 1 (2.3c)
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' [ O_hY (Xo, yo)] 1 1(k + 1) hn_k_l,k+l(AX, Ay) _ LcOxn_k_lCOyk+ 1 (n -- k - 1)! _.l

- - h.-k-l,k+l (Ax, Ay)(,_ k) hl k,k(Ax,_V) + (k + Z) '
." Onh x 0 nhy 1 1 1

[ax---z:¥o¢,(_o,yo)+ az._l,_layk+_ (Zo,Vo)] (n - k - 1)! _.."

But since h is a solution of the conservation law,

OnhX
az._--=-_0vk(x0,v0) + On hV ]Oz__k_lOyk+ a(Zo, Vo) = 0 (2.313

by Theorem 2.1. Thus,

(n - k) h,,_k,k(/',x,/',U)x+ (k+l) h,,_k_l,,_+_"(/',x, /',y) --, o (e.sg)

as Ax ---. O, Ay --. O, and the theorem follows.

The meaning of Theorem 2.3 becomes clear when we consider the divergence of .hn.

With _n_ dj (h_,hVN) defined by (2.95) and (2.96), we have

N n--1

A h XN(x,y) = E E (n -- k) hXn_k,k(X -- Xo) n-k-1 (y- yo) k (2.99a)
Oz

n=] k=O

0
...__

N n

Z khLk,k(x--Xo)"-k(Y--Yo)
n=l k=l

so that

N n--1

-- EE(k+I) v-- hn_k_ 1
n=l k=O

,,,+_(_- Xo)"-k-_(v - vo)k

a h_(_,v)+ O h_(x,v) ==

(2.99b)

N n--1

E E [(n - k)h'n__., + (k + 1)h:_k_l.,+l] (x- Xo) "-t-I (y - y0) k.
n=l k=O

According to Theorem 2.3, a necessary condition for _hN to converge to order N is that

-- hn_k_l,k+ 1(r, k) h_ (_, _) " (9..101a),-k,k + + _ 0

as Ax, Ay ---, 0, for n = 1, 2, ..., N, k = 0, 1, ..., n - 1.

The implications of this axe especially significant when it comes to numerical calcula-

tions. In general, the mechanism whereby conditions (2.101a) are satisfied depends on the
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particular numerical method being used. Finite-difference methods, for example, satisfy

each of the conditions (2.101a) to a certain order through the difference approximations

that are used. In this case, condition (2.101a) is satisfied to a given order, say order L,

for n = 1. Then for higher values of n, conditions (2.101a) are satisfied to an order which

is less than or equal to L. The higher order constraints expressed by (2.101a) do not

result in independent conditions for a finite-difference scheme. Rather, the higher order

constraints are automatically satisfied by virtue of the difference equations employed to

satisfy (2.101a) corresponding to n = 1.
y

On the other hand, when one solves for the unknown coefficients h,__k, k and h,,_k, k

directly, as in the present approach, each constraint associated with (2.101a) represents

an independent condition. Thus, to ensure that (2.101a) is always satisfied, one should

Y satisfyrequire hn_k, k and h,,_k, k to

-- hn-k-l,k+l --k) h• (k - on-k,k + + ) Y (2.101b)

for n = 1, 2, ..., N, k = 0, 1, ..., n - 1. That is, _hN should be a solution of the conservation

law. As a result, conditions (2.101a) are not satisfied just to a certain order as in finite-

difference methods, but rather are satisfied identically.

_ functions of intermediate variables (asWhen the coefficients hn_k, k and h,,_k, k are

in the case of the Navier-Stokes equations), each constraint associated with (2.101b) must

be expressed in terms of the intermediate variables. We now show that it is possible to

obtain these constraints directly without the need to re-express (2.101b) in terms of the

intermediate variables.

Let h = (hx,h y) be defined on a domain 73 such that h _ and hV are analytic at the

point (z0, y0) in _D, with series expansions that converge for all (_x, y) in 7). We then also

have the convergent series expressed by (2.84) and (2.85). If h is a solution to (2.77),

then its partial derivatives satisfy (2.79) for all (x,y), and in particular for (xo,yo). On

the other hand, suppose that the partial derivatives of h x and h v satisfy (2.79) at (x0, Yo).

Since _ and Oh_ are each convergent for all (x, y) in 79, so is their sum. Let RHS(2.84)

and RHS(2.85) denote the right hand sides of (2.84) and (2.85), respectively. Then all the

coefficients in the infinite series _ + _ = RttS(2.84) + RHS(2.85) are zero. Hence,

Ohz __Oh* = O, SO that _z is a solution of (2.77). We have established the following corollary
Oz Or

to Theorem $.1.

Corollary 2.1 Let _z = (h*,h y) be defined on a domain 79 of E2, and let h z and hU

be analytic at the point (x0, yo) in 79, with Taylor series expansions that converge for all

(x, y) in 7). Then, h satisfies V. h = 0 throughout 79 if and only if its partial derivatives

satisfy condition (2.79) at the point (zo, yo).

Since a polynomial is everywhere analytic, Corollary _.1 applies to the expansions

(2.95) and (2.96). To ensure that .hN is a solution of (2.77), it is sufficient to require the
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partial derivatives of h_ and h_ to satisfy (2.79) at the point (xo,yo).

We now illustrate this by way of the x-momentum equation. In view of Theorem _.3,

we require the second-order expansion _hx_ to be a solution of the governing conservation

law. Applying Corollary _.1, we first require h.xM to satisfy (2.80) at the cell center (xi, yj)

of SE(i, j):

_(__ + v_- ___) + (.__ - r_,) =

2.°(._) + _(p) _ _(_ ) + yv(. _) = o. (2.102)

We may then immediately write

2U0,o Ul,o + Pl,o
2 1

(4u_,0-v1,1) + Uo,_ Vo,o + Uo,oVo.l
3ReL ReL

(2uo,_ + v_,_) =

Ul,oU0,0 + U0,zv0,0 + Pt,0 1 2 (4 )] 0 (2.103)
Re [(2Uo,,+v,,1) + _ us,0-vl,l =

where the equality follows from (2.56). The first-order constraint expressed by (2.103) is

identical to the x-momentum flux conservation constraint (2.63).

We now require h_xM to satisfy (2.81a) and (2.815) at (xi,yj). Differentiating (2.102)

with respect to x and setting the resulting constant term to zero, we obtain the second-

order constraint

2 0. (2.104)2(2U0,oU2,o + U_,o + P_,o) + ul,_Vo,o + v,,lUo,o + U_,oVo,_ + Uo,_Vl,o =

Similarly, differentiating (2.102) with respect to y, we obtain

2(Uo,0Vo,_ + Vo,oUo,2 + Vo,_Uo._) + 2u_.,Uo,o + 2u_.0u0,, + P_,l

In the same manner, we obtain the second-order constraints

= 0. (2.105)

2u2.0 + vl,_ = 0

2Vo.2 + u_., = 0

2(Uo.o V_.o + Vo.oU_.o + V_.oU_.o) + 2v_., Vo.o + 2Vl.oVo., + P_.I = 0

2(2vo.oVo.2 + V2o.1 + Po.2) + u_._Vo.o + v,._Uo.o + u_.oVo.t + Uo.tVt.o ---- 0

(2.106)

(2.107)

(2.108)

(2.109)

for _M and _rM, respectively. The first-order constraints for .hM and .hrM are identical to

(2.56) and (2.70).
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By requiring h.M, h_xM, and _rM to be solutions of the governing conservation law,

we automatically ensure that local flux conservation is satisfied. This is a general result,

which follows from the divergence theorem. Any function with zero divergence will satisfy

local flux conservation. Thus, requiring the discrete flux vectors to obey the conservation

law ensures the satisfaction of both local flux conservation and the necessary conditions

for convergence to order N.

The formal order of accuracy of _M, _hxM, and _hrM as approximations to hM, h xM,

and fZVM is third-order. If third-order accuracy is maintained throughout the full develop-

ment of a specific scheme, then the order of accuracy of the scheme remains third-order.

An ideal error bound for the local expansions would then be given by (2.90) and (2.91).

III. Application to the Thin Airfoil

Boundary Layer Problem

We now construct a specific scheme for the thin airfoil boundary layer problem. Con-

sider the mesh shown in Figure 3. The airfoil lies on the x axis between x = 0 and x = 1,

and the grid is stretched in the plus and minus y directions. (The nonuniform spacing

does not introduce any new complication since the discrete equations presented in the

previous section still apply if Ax and Zxy are replaced by Axi and Ayi. ) Note that our

mesh includes both an upstream and wake region.

Let Ni and Nj denote the number of solution elements in the x and y directions,

respectively. There are six unknowns per cell for each of the three discrete variables u, v,

and p. There are then 18NiN i unknowns altogether, and we require 18NiN i conditions to

have a closed system of equations.

The first-order constraints (2.56), (2.63), and (2.70), together with the second-order

constraints (2.104) - (2.109), immediately provide 9 NiNj conditions. These conditions

ensure that the discrete flux vectors _M, _XM, and _,M are solutions of the governing

conservation law (equation 2.77).

We must also require that mass and momentum fluxes balance across each vertical and

horizontal interface in the mesh. This gives 3Nj(Ni - 1) + 3Ni(N i - 1) - 3Na conditions,

where Na is the number of solution elements between the airfoil leading and trailing edges.

Boundary conditions account for an additional 4Ni + 3Nj + 4Na conditions. For each

cell adjacent to the airfoil, we require the mass flux through the wall face, and the u velocity

component at the midpoint of the wall face, to be zero. At the upstream boundary we

specify the velocity, and at the downstream boundary we specify the pressure. Along the

free-stream boundary cells, we specify zero y gradient conditions for u and v.

Finally, we may set

p_,, = 0 (3.1)

p2,0 = 0 (3.2)
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on physical grounds. These terms are negligibly small due to the nearly constant (zero)

pressure gradient.*

The above conditions ensure the satisfaction of local and global flux conservation,

boundary conditions, and all other relevant physical requirements. We are now free to

impose any other physically realistic condition to close the system. The number of condi-

tions needed is Ni(Nj - 1) - Na. This is precisely the number of horizontal interfaces in

the mesh (minus those that coincide with the airfoil). Consequently, there is an additional

degree of freedom in specifying horizontal interface conditions. Following [3], we require u

to be continuous at the midpoint of each horizontal interface.

By virtue of (3.1) and (3.2), there are 16 unknowns on each solution element. However,

using the local constraints (2.56), (2.63), (2.70), (2.106), (2.107), and (2.109), six of the

unknowns may be eliminated in terms of other variables. The total number of unknowns

that must be solved for is then IONiNj.

The discrete boundary value problem outlined above is presented in the Appendix.

The equations presented there are a coupled system of second-order polynomial equations

in the unknown coefficients u0.0, v0.0, P0,0, etc.. Solution of this system may be accom-

plished very efficiently using Newton's method. Because the thin airfoil velocity field has a

preferred direction, the Newton iteration generally converges to the physical solution with-

out difficulty. An initial guess of uniform flow is usually sufficient to ensure convergence.

For flows with more complicated physics, it may be necessary to use a different solution

technique (e.g., a time-iterative approach).

The Jacobian matrix associated with equations A.9 - A.29 can be arranged to have the

structure shown in Figure 4. The form is the same as the Jacobian matrix associated with

the internal flow scheme. 3 Because the matrix is nearly block diagonal, direct inversion is

a suitable choice for the Newton iteration. By employing a sub-block pivoting strategy, 3

the Jacobian matrix retains the same structure throughout the elimination process, and

there is no matrix fill-in in the upper and lower diagonal blocks.

IV. Numerical Results

In this section we present numerical results from calculations of the thin airfoil flow

field at a Reynolds number of 100,000. To assess the accuracy of our results, we compare

with the Blasius solution. However, due to leading edge, trailing edge, and wake effects,

the Blasius boundary layer profile will not compare well with a Navier-Stokes solution

over the full length of the airfoil. On the other hand, at high Reynolds numbers, the

Blasius solution does provide the correct boundary layer profile over a substantial part of

*For many flows it will not be physically correct to impose conditions (3.1) and (3.2). The

author is currently investigating ways of retaining both P_.1 and p2.o for the more general

case.
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the airfoil. In particular, the Blasius solution may be usedfor comparisonin the interior
region where the leading and trailing edgesare many boundary layer thicknessesaway.

Information from the Blasius solution may also be usedin the construction of a mesh
for numerical computations. If we let Re denote the Reynolds number based on the airfoil

chord c, then the similarity relation v's

= v (4.1)

becomes

v_e y- ,/ U/Uoo (4.2)

c V2(v/ oo)(x/c)

where all quantities except 77 and Re are dimensional. We may identify the free-stream

velocity U with Uoo, and take 2_ = 1 (since we assume constant viscocity). Equation 4.2

then becomes

Y-, _/-_--. (4.3)
C Vzx

Corresponding to any 7, x and y are related through the equation

_/'_ _/-_ (4.4)Y- -- rl
¢

Equation (4.4) allows Us to estimate the location of the edge of the boundary layer for
= _ - to be the edge of theany fixed _ We take 77 6.0, corresponding to _ - 0.999999, s

boundary layer. An estimate of the boundary layer thickness 5x at any { is then given by

At the trailing edge we have the estimate

6t._. = 6.0 (4.6)

For Re = 100,000, one gets 6,.,. = 0.0268.

In the construction of a mesh for numerical computations, one would expect that the

free-stream mesh boundaries should extend to at least a distance of _,.,. from the airfoil

in order to obtain accurate results. In the present study, detailed numerical calculations

were carried out with mesh boundaries located at +y = 6t.¢., 1.5 6,.,., and 2.06,.,., where

Et.e. = 0.027. For each case, calculations were performed on a grid with uniform x spacing

(Ax = .02) and nonuniform y spacing with exponential stretching. The y spacing at the

wall (Aye) was determined on the basis of the boundary layer thickness near the leading

edge of the airfoil. With Ax = .02, we should require the mesh spacing to be fine enough
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to resolvethe boundary layer at z = .01 (since we require the u velocity to be continuous

at the midpoint of horizontal cell interfaces). The boundary layer thickness at z = .01 is

approximately 0.00268 (based on equation 4.5). Because the present discretization repre-

sents the u velocity by a quadratic polynomial, one would expect to be able to resolve the

nearly linear boundary layer profile in the near wall region with only one or two cells. Using

two cells, one obtains the estimate Avw = .00134. However, convergence problems were

encountered by the Newton's method for this value of AV_, (with uniform flow conditions

as the starting solution). We used the slightly larger value of AV,_ = .0015 instead.

Once the wall spacing and mesh boundaries are fixed, grid stretching can be used to

reduce the number of cells required to reach the outer boundary. Since we compute the

flow field on both sides of the airfoil, the number of cells available to resolve the boundary

layer is half the total number of cells in the V direction. A systematic series of calculations

performed with mesh boundaries located at 4- v = 6t.e., 1.5_t.e., and 2.06t._. showed that

no accuracy was gained by extending the mesh boundaries farther than -4-v = 6i.e. from

the airfoil. Consequently, the present discussion will deal only with results obtained from

the smaller mesh.

The first series of calculations were performed on grids with uniform z spacing of Ax =

.02. The upstream boundary was located at x = -.12, and the downstream boundary at

z = 1.5. The spacing was varied exponentially in the V direction, using as few as 16 cells

with exponential stretching of 22.4%, and as many as 28 ceils with exponential stretching

of 3.8%. In general, the agreement with the Blasius solution improved as the mesh was

refined. In Figure 5 we show two of the grids that were used.

Figures 6 - 8 present comparisons of the discrete velocity u with the Blasius solution

at various z locations along the airfoil. The numerical results in these figures were obtained

from the grids shown in Figure 5. Note that at each zi (the z nodal points), u(i,j) =

[u0,0 + uo.l(V - Vj) + uo._(V - yj)2]i,j is a piecewise continuous function from the wall to

the free stream (See equation A.18).

Figure 6 compares u with the Blasius solution at the airfoil leading edge (z = .01).

The discrete velocity clearly shows the effect of the strong leading edge singularity. The

Blasius similarity solution, on the other hand, does not account for the singular behavior

of the flow field in this region. It is apparent from these results that two ceils are sufficient

to resolve the leading edge boundary layer profile.

In Figures 7 and 8 we compare with the Blasius solution at four different locations

along the airfoil. The agreement steadily improves as x increases. This trend continues

up to about x = .85, where trailing edge and wake effects become significant. This can be

seen from the results shown in Figure 9 a., where we plot the maximum deviation of u

from the Blasius solution as a function of z.

In Figure 9 b., we show the improved accuracy that is obtained by refining the mesh

spacing in the y direction. The exponential y stretching for the five grids used in the figure

was 12.5%, 9.5%, 7.1%, 5.3%, and 3.8%, respectively. The maximum deviation of u from

the Blasius solution is less than 5 x 10 -3 over a significant portion of the airfoil for all of
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the grids except the coarsest one.

In Figures 6 - 8 we compared u with the Blasius solution at fixed nodal points Xi.

This enabled us to present a streamwise velocity profile which is continuous across cell

interfaces. However, it only required using the three discrete Taylor coefficients u0,0, Uo,1,

and u0.2. In Figures 10 a. and b., we compare u(xi + -4"_,y.i - ___i._) with the Blasius

solution (i. e., we compare at the lower right hand corner of each solution element). This

comparison requires the use of all the discrete Taylor coefficients associated with u_. The

mesh sizes associated with Figures 10 a. and b. are indicated below the figures. The 81

x 22 grid is the same as the one used in Figure 9 b. (Ax = .02, Ay_o = .0015 with 9.5%

exponential y stretching). The 110 x 28 grid is refined in both the x and y directions

(Axt.e. = .007, 2.5% exponential x stretching away from the trailing edge, Ayw = .0015,

with 3.8% exponential y stretching). The grids are intended to be "coarse" and "fine",

respectively.

The accuracy demonstrated in Figures 10 a. and b. is comparable to that shown in

Figures 7 and 8. This suggests that u_ uniformly approximates the exact solution u over

the entire solution element. Further evidence for this is provided by the results shown in

Figures 10 c. - f. In Figures 10 c. and d., comparison is made with the Blasius solution

at the cell center (i. e., u0.0 is compared with the Blasius solution). Figures 10 e. and f.

show the "error" (i. e., the deviation from the Blasius solution) of the numerical results in

Figures 10 a. - d.

The above results confirm that u does indeed uniformly approximate the exact solution

u throughout the solution element. This is a direct consequence of requiring the discrete

flux vectors to identically satisfy the governing conservation law. Since the conservation

law is satisfied identically, and not just at a point, there is no preferred location within a

solution element. Thus, the accuracy of the discrete approximation is essentially uniform.

One final set of results is presented in Figure 10 g. Here we compare the value of u

from adjacent solution elements at a common point on their interface. The maximum

difference in the value of u corresponding to the i = I and i = I + 1 locations is less than

2.24 x 10 -3. These results correspond to the "coarse" grid. For the "fine" grid, a similar

calculation showed a maximum difference which is less than 7.7 x 10 -4. Thus, u is nearly

continuous across cell interfaces.

We conclude our discussion with a presentation of numerical results from the trailing

edge region. Our motivation was to determine how fine a mesh spacing is required to

accurately resolve the trailing edge pressure singularity. The grids used for this purpose

are shown in Figure 11. The y spacing was the same for all five grids. Each grid has

Ayw = .0015, 9.5% exponential y stretching, and free-stream mesh boundaries located at

+y = .027. The mesh in Figure 11 a. has uniform x spacing, while the other four grids

are refined in the trailing edge region with exponential stretching. The value of Ax at

the trailing edge was :02, .01, .009, .008, and .007, respectively. This is denoted below

each figure by "dxte = .02", etc. The exponential stretching away from the trailing edge

was the same in the wake as on the airfoil. The downstream boundary was located at
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approximately x ----1.5 for all cases.

In Figures 12 and 13 we present the numerical results. Figure 12 shows the pressure

coefficient as a function of x. The results correspond in order to the five grids shown in

Figure 11. It is remarkable how little mesh refinement is required to resolve the pressure

singularity. Our results indicate a minimum value of -.014 for the pressure coefficient.

This agrees well with the recent calculations of Srinivasan and Rubin. 9

Figure 13 shows the streamwise velocity profile at four different x locations in the

trailing edge region. The results correspond to the last solution element on the airfoil and

the first three solution elements in the wake.

All of the calculations associated with the present work were performed on the Cray

YMP at the NASA Lewis Research Center. The CPU times ranged from 30.3 seconds

for the coarsest grid (81 x 16) to 170 seconds for the finest grid (110 x 28). Most of the

calculations took about 80 CPU seconds. Each case was started from uniform flow and

converged in nine or ten Newton iterations to a maximum residual error which was less

than 10 -_°.

The above CPU times can be considerably reduced by using a previous solution, rather

than uniform flow, as the initial guess for Newton's method. Further reductions can be

achieved by using equations A.9 - A.11 to eliminate additional variables from the discrete

system of equations that must be solved. If three more variables are eliminated, the block

sizes associated with the Jacobian matrix can be reduced from 10Nj to 7Nj. Since the

operation count for Gaussian elimination is O(n3), where n is the block size, the CPU

times could be reduced by a factor of (_)3 _ 2.9. Combined with using an improved

initial guess, we estimate that the CPU times can be reduced by a factor of about five

without making any changes to the matrix solution technique.

Summary

In this paper we have presented a new numerical scheme for the solution of the thin

airfoil boundary layer problem. The results presented above have shown (i) the ability

of the scheme to accurately resolve the thin airfoil flow field on grids which are much

coarser than those used by conventional numerical methods, (ii) the uniform accuracy of

the discrete solution throughout the solution element, and (iii) a nearly continuous discrete

solution across cell interfaces.

In Section II, using both an integral and differential approach, we rederived the discrete

flux conservation equations presented in [3]. Here we presented a simpler method for

deriving the flux expressions at cell interfaces, and provided a systematic and rigorous

derivation of the conditions used to simulate the differential form of the conservation laws.

A generalized concept of convergence was introduced, and necessary conditions for the

order-N convergence of a discrete approximation were derived. In addition, necessary and

sufficient conditions for a discrete approximation to satisfy a conservation law in E2 were

presented. An ideal error bound on the discrete solution was also derived.
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We conclude with the following remarks. First, the theoretical results established in
Section II C. are applicable to any conservationlaw in E2, and their anMogues in higher

dimensions readily follow. Second, extension of the present scheme to three dimensions

is straightforward and follows naturally from the 2-D formulation. Third, higher-order

schemes for the Navier-Stokes equations may be very efficiently constructed using the

methodology and theory presented in Section II. Fourth, a faithful simulation of the con-

servation laws associated with the Navier-Stokes equations requires the rigorous enforce-

ment of both local and global flux conservation. This is accomplished most naturally

through an integral formulation. At the same time, the integral and differential forms of

the conservation laws cannot be divorced from each other. Thus, a fundamental tenet of

the space-time solution element method is the rigorous enforcement of both the integral

and differential forms of the governing conservation laws. Finally, the results presented

in Section IV have clearly demonstrated the convergence of the discrete solution as the

mesh spacing is refined. The uniform accuracy over the solution element suggests that the

convergence is of order two. An analysis of the order of convergence will be provided in a

forthcoming paper.
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Appendix

Pl,1 _ 0

P_,o -- 0

Vo, 1 _ _ Ul, 0

Vl, I _" _ 2 U2, 0

UI, 1 "--" -- 2 V0, 2

2

p,,o = -(U,,oUo,o + uo,_ Vo,o) + k--_-(_,_,o + Uo,_)

2

Vo,, = -(_,,o_o,o - _,o_o,o) + k-;7_ (_,o + Vo,_)

:

Vo,_ = (_o,o_,o - _o,o_o,_) - _(u,_,o + Uo., _,o)

(A.:)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.S)

Second-Order Constraints:

2 ] =02(Uo.oU2,o - Vo,oVo.2) + u_.o + Uo.1 Vl.o i,j

Vo,oUo,_ -- Uo,oVo,2]i,j = 0

I I--o
_'_O,D V_,o -- Vo,o "_,Oj i,j

(A.9)

(A.10)

Balance of Mass and Momementum Fluxes Across Vertical Interfaces:

AY Ax 2 Ax ]1--'_Uo,_ + ---4--'U,.o + "-_-u,,o + Uo.o ij

[AU_ Az2 /_z ]- [ 1---_-uo., + "--(-u,.o 2 U"O "]- U°'° iq-l,j

= 0

(A.12)
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lAY ,',-, 2 uz2,o

•-_'-tz uo,2 'z/,o,o-{'- Uo, l. "]- U2,o ue,o -- vo,2 Vo,o -- - 2

2
AX[vo.oUo,1 -- Uo,oU,,o (,.,o,_--U_,o)] + Po,o

2 Rex.

2
[AY 2 2 u_, o

-- [--_--(2 Uo,_ Uo,o + Uo,_ + u2,o Uo,o -- Vo,_ Vo,o 2

a_ 2 (_o,___,o)1 + Vo,o
+ -_-[Vo,oUo,1 - Uo,oU_.o Re_

AX 2 . ?22
uo,,v,,o) + ---_---(2u,,oUo,o+ ,,o)2

Uo.,V,,o) + Az 2 "2 u 22 --T-(U_,o_o,o+ ,,o)

2 u_]
ReL Uz,o -1- o,o i+l,j

= 0 (A.13)

=(Vo,_ Az2-Uo,o+ Uo,_Vo,o- _,oUo,,) + -7-O,_.oUo,o+ U_,oVo.o+ _,,oU,,o)

(V_.o- Vo,_)] z (_o.,+ V,,o)+ Vo,oUo,o]
Ax 2

+ _ [Uo.o V_.o + Vo,oU,,o Re_ ReL i,.i

[Ay 2 Ax 2 ,

_L <..uoo+oo .o-.o..)÷.o.o +.ovoo+..o.o)
_ _ ]_Xiuo.oV,.o+ Vo.oU,.o (V,.o-Vo._)] (_o.,+V,.o) + _o,oUo,o

2 ReL Rez i+z,j

= 0 (A.14)

Balance of Mass and Momementum Fluxes Across Horizontal Interfaces:

ax Ay 2 Ay ]
1---_-V2,o Jr- TVo,= -- -_--U,,o "Jr I)o,o i,j

ax Ay 2 _ ]- -%--v_,0 + --T--Vo._+ U,,o + Vo,o
i,j+l

=0

(A._5)
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Ax Ay 2 .

-_-(U,.oVo,o + V2,oUo,o + u,,ov,,°) + -y-(Uo,,Vo,o + Vo,,Uo,o - Uo,_U,,o)

4- Vo,o Uo,z -- Uo,o Uz,o Rer.
1(Uo,, - Us,o) .n,_,_(Uo,, + V,,o) + Uo,oVo,o

i,j

[ /_X 2 Ay 2 .

- [-i-F(U_,oVo,o+ V_,oUo,o+ U,,oV,,o)+ --_--(Uo,,Vo,o+ Vo,,Uo,o- ,.,o,,U,,o)

_[2 ?20,o '/./,o,z -- Uo,o l_z,o 2 (Uo.2 - U_,o)] 1ReL ReL(Uo,, +V_,o) 4- Uo,oVo,o
i,j+l

= 0 (A.16)

Ax Ay 2 . 11

-5_--(2_2,o,o.o + _,_,o)+ -2-_._,o,_Vo,o+ U_,oUo,o+ _,_,o- _,o.,V,.o)

Ay [Uo,o V:,o + Vo,o U_,o 2
2 ReL 2 v2](V_,o-Vo_)] + po,o + w--U_,o + o,o

l"£e L i,j

[Az _ v 2 AY 2 . luo,,V,,o )
-[-i-_-(2_,oOo,o+ _,o)+ -z-_Vo,_Vo,o+ _,_,oUo,o+ _-,,,_,o2

4- [Uo,oV,,o 4- Vo,o_,,o neL(V2,o--Vo,2)] 4- Po,o 4- nc----_U,,o 4- Yo,o i,j-.bl

= 0 (A.17)

Continuity of u Across Horizontal Interfaces:

Ay--T-Uo,_ + _--2YUo,_ ]2 Uo,: 4- Uo,o i,jq-1
= 0 (A.lS)
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Airfoil Boundary Conditions:
Lower Surface

AY Ay Uo,o] i--V-Uo,_+ TUo,_ + = o

lax2 Ay2 _y 1 = o12 V2,o + -'_--Vo,2 2 ul,o + Vo,o i

(A.19)

Upper Surface

ay Ay 1 = 0uo,_ 2 uo,1 + Uo,o i

Ax Ay 2 Ay Vo,o] i12 V_,o + _" Vo,2 + _ U_,o +
= 0

(A.21)

Upstream Boundary Conditions:

]2 u_,o + Uo,o J
_c_ = 0

4 v2,0 2 V_,o + Vo,o J
= 0

(A.23)

(A.24)

Downstream Boundary Condition:

Po,o]j - P_ = 0 (A.25)

Free-Stream Boundary Conditions:

Lower Boundary

-- Ay Uo, 2 --_ Uo,1] i -- 0

- 0
[--Ayvo,2 Ux,o]i "-

(A.26)

(A.27)

Upper Boundary

Ayuo,_ + uo,1]i = 0

-- 0
[Ay vo,2 Ul,o] i "--

(A.2S)

(A.29)
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Figure 3. Computational gdd for a thin (flat-plate) airfoil.
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Figure 5 a. 81 x 20 computational grid with 12.5% exponential y stretching.
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Figure 5 b. 81 x 28 computational grid with 3.8% exponential y stretching.
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Flgure 6. Comparlson of numerical results and Blaslus solutlon at alrfoll leading

edge (x = .01). Calculatlons performed on an 81 x 20 gdd wlth 12.5% exponentlal

y stretchlng.
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Figure 7. Comparison of numerical results and Blaslus solution at x = .21, .41, .61, and

.81. Calculations performed on an 81 x 20 grid with 12.5% exponential y stretching.
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Figure 8. Compadson of numerical results and Blaslus solution at x = .21, .41, .61, and

.81. Calculations performed on an 81 x 28 grid with 3.8% exponential y stretching.
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Figure 9 a. Maximum deviation of predicted streamwise velocity from Blaslus solution

as a function of x. 81 x 20 grid with 12.5% exponential y stretching.
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Figure 9 b. Effect of mesh refinement on deviation from Blaslus solution.
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Figure 10 a. Comparison of numerical results and Blaslus solution at x = .82.

Comparison is at the lower right hand comer of each solution element. 81 x 22 grid.
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Figure 10 b. Comparison of numerical results and Biaslus solution at x : .82 2.

Comparison is at the lower right hand comer of each solution element. 110 x 28 grid.
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Figure 10 c. Comparison of numerical results and Blaslus solution at x = .81.

Comparison Is at the cell center of each soluUon element. 81 x 22 grid.
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Figure 10 d. Comparison of numerical results and Blasius solution at x = .816.

Comparison is at the cell center of each solution element. 110 x 28 gdd.
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Figure 10 e. Difference between discrete u velocity and Blaslus solution at cell

center and lower dght comer of solution elements, x = .81, .82. 81 x 22 grid.
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Figure 10 f. Difference between discrete u velocity and Blasius solution at cell
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Figure 10 g. Comparison of numerical results from adjacent solution elements

and the Blaslus solution, x = .82, 81 x 22 grid.
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Figure 11 a. 81 x 22 computational grid with uniform x spacing, dxte = .02.
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Figure 11 b. 98 x 22 computational grid with 2% exponential x stretching.

dxte = .01
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Figure 11 c. 102 x 22 computational grid with 2.1% exponential x stretching.
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Figure 11 d. 106 x 22 computational grid with 2.3% exponential x stretching.
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Figure 11 e. 110 x 22 computational grid with 2.5% exponential x stretching.
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Figure 12 a. Pressure coefficient in the trailing edge region. 81 x 22 grid.
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Figure 12 b. Pressure coefficient in the trailing edge region. 98 x 22 grid.
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Figure 12 e. Pressure coefficient in the trailing edge region. 110 x 22 grid.
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Figure 13 a. Predicted streamwlse velocity profile In the trolling edge region

from an 81 x 22 grid with uniform x spacing, dxte = .02.
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